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A High-Power and High-Efficiency Monolithic
Power Amplifier at 28 GHz for
LMDS Applications

Mansoor K. Siddiqui, Arvind K. Sharm&enior Member, IEEEL eonardo G. Callejo, and Richard Lai

Abstract— A high-power and high-efficiency monolithic cost. The power monolithic microwave integrated circuits
power amplifier operating from 27.5 to 29.5 GHz is presented (MMIC’s), on the other hand, offer small size, reproducible
for local multipoint distribution service. Using 0.15-um performance, and high reliability. They are also highly cost

InGaAs/AlGaAs/GaAs pseudomorphic high electron-mobility ffective due t . tuni . S| dul
transistor devices, the two-stage power amplifier on 4-mil GaAs efiective due 1o minimum or no tuning requirements in module

substrate demonstrated greater than 16-dB small-signal gain, fabrication process.

32-dBm (1.6 W) power with 35% power-added efficiency. The  For LMDS applications, Siddiquet al. [1] presented a
amplifier attained peak output power of 33.9 dBm (2.4 W) hybrid power amplifier, which produced 8.75-dB small-signal
and peak power-added efficiency of 37%. At the peak power ain 39 605 power-added efficiency, and 37 dBm (5.0 W) from

level, the amplifier exhibited power densities in excess of 640 . . .
mW/mm, which is the highest output power density attained by 27.5 t0 29.5 GHz. At this power level, amplifier power density

Ka-band monolithic power amplifiers. At lower drain voltage, Was 780 mW/mm. This is the best power density achieved
the amplifier attained 43% power-added efficiency with 30-dBm using high electron-mobility transistors (HEMT’s) on a 1.2-mil

output power. GaAs substrate.
Index Terms— Millimeter-wave transmitters, MMIC power Recently, Yarboroughkt al.[2] presented performance com-
amplifiers, MMIC transmitters. parison of 1-W Ka-band MMIC amplifiers realized using

pseudomorphic HEMT'’s (pHEMT's) and ion-implanted MES-
FET's. The power amplifier using pHEMT’s achieved greater
than 20-dB gain, 35% power-added efficiency from 26.5 to
ITH THE emergence of local multipoint communica28 GHz. It utilized four 60g=m cells, to achieve 1-W power
tion service (LMDS), there is now considerable activityevel and exhibited power density of 417 mW/mm. The power
in Ka-band. In order to provide communication services su@mplifier using 0.2sm MESFET also achieved 1-W power
as television, video-on-demand, distance learning, Interigth 18-dB gain and 24% power-added efficiency.
access, interactive games, as well as a host of other services {@gram et al. [3] also presented a 6-W power amplifier
homes, various system architectures are being implementegkilizing monolithic amplifiers on 2-mil GaAs substrate pro-
In a typical analog FM system operating in 27.5-29.5 GHgucing 35.4 dBm (3.47 W) output power with 11.5-dB gain
20-MHz-wide FM channels are used to broadcast video. ahd 28% power-added efﬁciency_ The power density of the
LMDS system in a cellular network consisting of Iow-powebutput devices was 516 mwW/mm.
transmitters Operating in 1-GHz bandWldth, prOVide transmiS'A Comparison of variou# a-band power amp”ﬁers interms
sion to the subscribers, as shown in Fig. Mlewer digital of output power density is provided in Table I. Itis clearly seen
quaternary phase-shift keying (QPSK) systems use typicajiyat the power density of 780 mW/mm, presented in [1], is still
40-MHz channels to provide high-capacity data transfer.  the best power density achieved by a hybrid MIC amplifier.
This tremendous need has created considerable interest ifh general, it is possible to attain high-efficiency and high-
the development o a-band high-power and high-efficiencypower density with smaller periphery devices. However, the
amplifiers. Transmit power of 1 W is required for variougower-amplifier design challenge is to achieve high efficiency
system implementations. at high output power levels. An additional challenge in the
Solid-state discrete devices in a microwave integrated circdiésign of monolithic power amplifiers is to achieve power
(MIC) amplifier can be used to achieve the desired power levgensities somewhat closer to that achieved by MIC power
The large periphery devices used in high-power amplifieggnplifiers, which are usually tuned to get the best performance
present very low impedance levels. The variations in asseffgm devices.
bly fabrication process invariably require extensive assembly,with that objective in mind, we designed a power amplifier
test, and tune Operations, which result in modules with higﬂ)erating in 27.5-29-GHz band. This power amp"ﬁer demon-
strated greater than 16-dB small-signal gain, 32-dBm power

. INTRODUCTION
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Fig. 1. LMDS system.
TABLE | Lg Rg Cdg Rd Ld
COMPARISON OF K a-BAND POWER AMPLIFIERS ° mm A J_ it M m o
Frequency Outout P Power Cg
Range dlépu Wower density Reference gm ?ﬂd;: Cds
(GHz) m (Watls) | w/mm) ai
18-19 37.2 (5.248) 540 5
27-30 37.0 (5.000) 783 2 Rs
27-30 30.0 (1.000) 417 3
27-30 33.9 (2.454) 640 This Paper Ls
34-36 30.0 (1.000) 312 6
34-36 35.4 (3.467) 516 4
34-36 37.8 (6.025) 448 4 (@)
Parameter Description Parameter Units Parameter Value
the earlier results of 780 mW/mm [1]. This paper will preserjtTransconductance Gm mho 0.078052
details of design approach, process, and measured performgriesgsy T ps 1.653155
of this monolithic power amp“ﬁer Gate to Source Capacitance Cgs p¥F 0.175070
Gate to Drain Capacitance Cdg pF 0.021008
II. DEVICE AND PROCESSTECHNOLOGY Drain to Source Capacitance Cds pF 0.048216
' . . Drain to Source Resistance Rds ohm 273.7828
The pseudomprphlc InGaAs/A_IGaA;/GaAs HEMT deViCe¥ Channel Resistance Ri ohm 2.969488
have been engineered to provide high breakdown VOlta@& e Contact Resistance Re ohm 0408305
and high current densities. They also provide high gain anfg i contact Resistance Rd ohm 0.600000
power-added efficiency at millimeter-wave frequencies. TPgource Contact Resistance Rs obm 0.400000
improve the breakdown voltage, the AlGaAs layer iS lefl it Contact Inductance e oH 0.014466
undoped and the Schottky gate is recessed to this UNndOdEE i Contact Inductance Ld oH 0.033161
region. To increase the current density, an additional planBE,urce Contact Inductance Ls oH 0.001015
doping is employed, increasing the amount of charge in the o

two-dimensional electron gas. The device optimization was
performed to ensure high aspect ratio, which is defined Bg. 2. (a) HEMT linear model. (b) Equivalent-circuit parameters.
the ratio of gate length to the gate-to-channel separation. This

enables the device to provide high gain, high efficiency, asltage of up to 12 V (measured at 0.1 ma/mm), maximum
well as high cutoff frequency for millimeter-wave operationchannel current of 500 ma/mm, transconductance of 550
Typically, for a 0.15um gate-length devices, gate-to-drairmS/mm, andf; greater than 75 GHz is obtained. TRW'’s
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Fig. 3. (a) Asymmetric Curtice nonlinear model. (b) Device model at 50% gmpgakParameter values.

power HEMT process is capable of providing better thahe load—pull data oK a-band prematched structures were
800 mW/mm, as documented in [1]. obtained. Since these structures use transmission lines only,
it is easy to deembed these transforming network from the
lll. HEMT DEVICE MODEL on-wafer measurements to obtain device load—pull impedance

The development of an accurate small- and Iarge-sigﬂﬁfo_r_mat_ion- This proced_ure is accurate and useful in the
model is extremely critical in the design of power ampliverification of the large-signal model.
fiers [6]. Accurate small-signal models were developed using
measuredS-parameter data. Extensive dc and RF measure- »
ments over different bias conditions were made to develop! "€ amplifier uses 0.1xm x 320 pm and 0.15xm x
accurate linear and nonlinear device modefsparameter 480 pm dewces_ as a basic cell for use in m_—phase mu_lt|cell
measurements were performed at 50% and 10Q%at peak matching. The first stage uses 1.36-mm periphery devices to
conductance, aty, = 3.0 and 5.0 V (active conditions), atdrive 3.84-mm output stage devices. The amplifier is devel-
Vie =0V andV,. = —2.0 and 0.0 V (passive conditions),OPed on 4-mil GaAs substrate. The design employed simple
and Vi = 0.0 V with V,. forward biased. A nonlinear transmission-line elements to transform the device optimum
model was developed for 0.18m x 200 zm device, which load to moderate impedance level. We used a Curtice nonlinear
was scaled and used as a cell for the O;B x 320 um model to design this amplifier. Fig. 5 shows the photograph
and 0.15um x 480 um. The small-signal model parameter®f the amplifier. The amplifier provides unconditional stability
were obtained for all the bias conditions simultaneously usingnider all load conditions.
the measuredS-parameter data. Fig. 2 presents the linear
model and its equivalent-circuit parameter values. A large- V. POWER-AMPLIFIER PERFORMANCE
signal Curtice asymmetric model, using deV data, is The amplifiers were initially tested for output power as a
shown in Fig. 3 with the parameter values. Fig. 4 shows tifienction of frequency at a given input power using an on-
verification between the small-sign&lparameter, measuredwafer pulse power test set. The test data show consistent
at Vy, 5 V and 50% I,; at peak conductance, andl-W performance with RF functional yield greater than 70%.
the power-dependeni-parameters obtained from the largeSeveral amplifiers were then assembled in a test fixture and
signal model. Using the procedure described by Sharma [#jey also achieved consistent performance.

IV. POWER-AMPLIFIER DESIGN
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The performance of the amplifier is shown in Fig. 6. It . s o 1s is 1Y 1o

shows output power, gain, and power-added-efficiency perfor- INPUT POWER (dBm)

mances of the amplifier at 27.5 GHz, biased for high-efficien B

operation. The small-signal gain is about 19 dB. When trf/ hgmc'\i’éer@”g%%raﬂgﬁ?rmance of the amplifier at 27.5 GHz for
amplifier is about 5 dB in compression, the output power of

33 dBm and 37.2% power-added efficiency is obtained.

Fig. 7(a) shows the same performance parameters bgth first and second stages show a gradual increase in gate
29 GHz for high-power operation. At 22 dBm of input powergurrents. This shows that both the first and second stages are
the amplifier was capable of producing 33.59 dBm of outp@asonably in compression.
power. The power-added efficiency was 30% and is slightly A typical power-added efficiency and output power as a
lower than the high-efficiency operation. Fig. 7(b) shows tHanction of frequency is shown in Fig. 8. At 21 dBm of input
gate currents as a function of drive power. It can be seen tipaiwer, the output power variation is less than 0.25 dBm over
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26.5-29.5 GHz. Fig. 9 shows maximum output power that cah ‘ A |
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It is interesting to observe the behavior of this power

amplifier as a function of drain voltage, as shown in Fig. 1Gig. 11. Power-added efficiency as a function of input power for various
The output power and gain are plotted as a function of inpffin Pias voltages.

power for various drain voltages. At lower drain voltage,
the gain and output power is lower. As the drain voltage &chieved. The power-added efficiency degrades as the output

increased, both the gain and output power increases. As shgwmver and drain bias is increased. This demonstrates that the
in Fig. 11, the power-added efficiency, on the other hand, asnplifier output power and efficiency can be adjusted to some
best at lower drain voltage, and a peak value of 43% wastent to achieve desired system performance. It is important
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